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Abstract

Recently, the area of Mixed Integer Nonlinear Programming (MINLP)
has experienced tremendous growth and a flourish of research activity.
In this article we will give a brief overview of past developments in the
MINLP arena and discuss some of the future work that can foster the
development of MINLP in general and, in particular, robust solver tech-
nology for the practical solution of problems.

1 Introduction

Mized Integer Nonlinear Programming (MINLP) refers to mathematical pro-
gramming with continuous and discrete variables and nonlinearities in the ob-
jective function and constraints. The use of MINLP is a natural approach of
formulating problems where it is necessary to simultaneously optimize the sys-
tem structure (discrete) and parameters (continuous).

MINLPs have been used in various applications, including the process indus-
try and the financial, engineering, management science and operations research
sectors. It includes problems in process flow sheets, portfolio selection, batch
processing in chemical engineering (consisting of mixing, reaction, and centrifuge
separation), and optimal design of gas or water transmission networks. Other
areas of interest include the automobile, aircraft, and VLSI manufacturing ar-
eas. An impressive collection of MINLP applications can be found in [14] and
[15]. The needs in such diverse areas have motivated research and development
in MINLP solver technology, particularly in algorithms for handling large-scale,
highly combinatorial and highly nonlinear problems.

The general form of a MINLP is

minimize f(z,y)
subject to  g(z,y) <0 (1)
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The function f(z,y) is a nonlinear objective function and g(z,y) a nonlinear
constraint function. The variables z,y are the decision variables, where y is
required to be integer! valued. X and Y are bounding-box-type restrictions on
the variables. We refer to [9] for more information about MINLP fundamentals
in textbook format.

2 Algorithms

MINLP problems are precisely so difficult to solve, because they combine all
the difficulties of both of their subclasses: the combinatorial nature of mixed
integer programs (MIP) and the difficulty in solving nonconvex (and even con-
vex) nonlinear programs (NLP). Because subclasses MIP and NLP are among
the class of theoretically difficult problems (NP-complete), so it is not surpris-
ing that solving MINLP can be a challenging and daring venture. Fortunately,
the component structure of MIP and NLP within MINLP provides a collec-
tion of natural algorithmic approaches, exploiting the structure of each of the
subcomponents.

Solution Approaches

Methods for solving MINLPs include innovative approaches and related tech-
niques taken and extended from MIP. Outer Approximation (OA) methods
[5, 6], Branch-and-Bound (B&B) [16, 23], Extended Cutting Plane methods
[33], and Generalized Bender’s Decomposition (GBD) [13] for solving MINLPs
have been discussed in the literature since the early 1980’s. These approaches
generally rely on the successive solutions of closely related NLP problems. For
example, B&B starts out forming a pure continuous NLP problem by dropping
the integrality requirements of the discrete variables (often called the relaxed
MINLP or RMINLP). Moreover, each node of the emerging B&B tree represents
a solution of the RMINLP with adjusted bounds on the discrete variables.

In addition, OA and GBD require the successive solution of a related MIP
problem. Both algorithms decompose the MINLP into an NLP subproblem
that has the discrete variables fixed and a linear MIP master problem. The
main difference between GBD and OA is in the definition of the MIP master
problem. OA relies on tangential planes (or linearizations), effectively reducing
each subproblem to a smaller feasible set, whereas the master MIP problem
generated by GBD is given by a dual representation of the continuous space.

The approaches described above only guarantee global optimality under
(generalized) convexity. Deterministic algorithms for global optimization of
nonconvex problems require the solution of subproblems obtained via convex
relaxations of the original problem in a branch-and-bound context, and have
been quite successful in solving MINLPs [7, 29].

LOther special types of discrete variables known from the “linear world” such as SOS,
semi-continuous, and semi-integer variables can also be handled by most algorithms.



3 Software

Although theoretical algorithmic ideas for solving MINLP have been around
for a while, the practical implementation of such concepts is much more diffi-
cult. Memory limitations, efficient numerical linear algebra routines, suitable
algorithmic tolerances, and determining default solver options are some of the
key issues faced when extending algorithms to large-scale, general-purpose soft-
ware. In this section we give a brief and possibly incomplete historical overview
of practical general purpose MINLP software.

Commercial MINLP Software Packages

Best to our knowledge, the earliest commercial software package that could
solve MINLP problems was SCICONIC [10, 27] in the mid 1970’s. Rather than
handling nonlinearities directly, linked SOS variables provided a mechanism to
represent discretized nonlinear functions and allowed solving the problem via
MIP. In the mid 1980’s Grossman and Kocis [17] developed GAMS/DICOPT
[12], a general purpose MINLP algorithm based on the outer approximation
method. In the early 1990’s LINDOs [25] and What’s Best [24] B&B code using
the Generalized Reduced Gradient (GRG) code for subproblems was extended
to solve MINLPs.

Since then a number of excellent academic as well as commercial codes have
surfaced, including alphaECP [34] and mittlp [28], both of which are based
on extended cutting plane methods, and MINLP_BB [19] and SBB [12], which
use branch-and-bound to solve relaxed NLP subproblems. Even on the frontier
of global MINLP, reliable and large-scale packages have materialized including
alphaBB [1] and BARON [29], which use convex relaxations in a branch-and-
bound framework.

Modeling Languages

The emergence of algebraic modeling languages in the mid to late 1980’s and
early 1990’s has greatly simplified the process of modeling, in particular the
formulation of MINLP type problems. Also, from a MINLP solver perspective,
a modeling system delivers reliable black-box-type function evaluations and first
and second order derivative information. Finally, the common solver interface
of a modeling system allows MINLP algorithms to deploy existing NLP and
MIP solvers to solve subproblems in a seamless way. A collection of MINLP
models can be found in libraries such as MacMINLP [18] (AMPL [11] models),
chapter 12 of [8] (GAMS [4] models) and as a superset MINLPLib [4] (GAMS
models). The latter is available as part of the MINLP World. MINLP World
is a forum for discussion and dissemination of information about all aspects of
MINLP [20].



4 Recent Developments

With the recent progress made in global optimization, the importance of mod-
eling systems has taken on a more significant role. In particular, most global
solvers require more than black-box function evaluations. These solvers need
structural information of algebraic expressions to build convex relaxations. Al-
phaBB and the modeling language MINOPT [26], as well as the recent release
of GAMS/BARON [29] have shown the feasibility of this concept.

Another important advancement is the implementation of open algorithms.
AIMMS-OA [2] is an outer approximation method similar to GAMS/DICOPT,
but with the distinct feature that it allows user modification for fine-tuning the
method for a particular problem. Such an open approach allows advanced users
to adjust the algorithm to suit the problem at hand.

Recent research has also focused on combining of Random Search (RS), such
as Tabu, Scatter Search, Simulated Annealing or Genetic Algorithms, with NLP
methods. Recent implementations like OQNLP [12, 30] and LaGO [21, 22] have
proven to be quite successful.

Finally, the area of Disjunctive Programming uses disjunctions and logic
propositions to represent the discrete decisions in the continuous and discrete
space respectively. Disjunctive programs, conveniently modeled and automat-
ically reformulated in big M or convex region models, give access to a rich
area of applications. Widespread interest in such models has spawned a new
computing environment (LogMIP [31]), developed specifically for generalized
disjunctive programming.

5 Future Directions

Progress in the MINLP arena has been significant in recent years, and we are
now able to solve large-scale problems efficiently using a wide variety of ap-
proaches. However, MINLP has yet to reach the level of maturity that MIP has
achieved. While the MIP community has benefited greatly from preprocessing
to reduce model sizes and to detect special structure, MINLP technology is still
lagging behind. NLP and MINLP preprocessing, similar to global methods,
will require the delivery of structural information from the modeling languages.
Progress on reliable large-scale NLP codes with restarting capabilities will have
an immediate impact on MINLP. Furthermore, combining individual algorithms
(e.g. branch-and-bound and extended cutting plane method) with sophisticated
search strategies (e.g. non-trivial B&B selection strategies) and heuristics to
quickly determine integer solutions will help to close the gap. If research and
development continues at the current level of activity, MINLP will soon achieve
a stage of maturity enjoyed by the other areas in mathematical programming.
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